Manifold regularization in structured output space for semi-supervised structured output prediction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Supervised Learning for Structured Output Prediction

We consider the problem of learning the parameters of a structured output prediction model, that is, learning to predict elements of a complex interdependent output space that correspond to a given input. Unlike many of the existing approaches, we focus on the weakly supervised setting, where most (or all) of the training samples have only been partially annotated. Given such a weakly supervise...

متن کامل

Large Margin Semi-supervised Structured Output Learning

In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semi-supervised structured classification has been developed to handle large amounts of unlabeled structured data. In this work, we consider semi-supervised structural SVMs with domain constraints. The optimization problem, which in general is...

متن کامل

Input Output Kernel Regression: Supervised and Semi-Supervised Structured Output Prediction with Operator-Valued Kernels

In this paper, we introduce a novel approach, called Input Output Kernel Regression (IOKR), for learning mappings between structured inputs and structured outputs. The approach belongs to the family of Output Kernel Regression methods devoted to regression in feature space endowed with some output kernel. In order to take into account structure in input data and benefit from kernels in the inpu...

متن کامل

Output Space Search for Structured Prediction

We consider a framework for structured prediction based on search in the space of complete structured outputs. Given a structured input, an output is produced by running a time-bounded search procedure guided by a learned cost function, and then returning the least cost output uncovered during the search. This framework can be instantiated for a wide range of search spaces and search procedures...

متن کامل

Structured prediction via output space search

We consider a framework for structured prediction based on search in the space of complete structured outputs. Given a structured input, an output is produced by running a timebounded search procedure guided by a learned cost function, and then returning the least cost output uncovered during the search. This framework can be instantiated for a wide range of search spaces and search procedures,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computing and Applications

سال: 2015

ISSN: 0941-0643,1433-3058

DOI: 10.1007/s00521-015-2029-2